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Statistical methods combined with Software-in-the-Loop (SiL) simulation help to analyze 

the reliability of Advanced Driver Assistance Systems (ADAS).

/ Scenario-Based Driving Simulation

The validation of Advanced Driver Assistance Systems is performed with 

a scenario based simulation. Simulation in this context means that the 

control device, on which the ADAS are running, is present as a simulation 

tool, running the real ECU code and thus software-in-the-loop simulations 

are performed. All inputs for the simulated controller are generated by a 

simulation environment. These include sensors, vehicle data as well as data 

from other ECU’s installed in the vehicle. In order to generate plausible input 

data, a virtual environment is simulated in which the system vehicle moves 

and other road users (objects) are detected by sensor models. Thus, the 

virtual world is processed and captured, and control quantities calculated 

therefrom are delivered back to the vehicle model.

For the scenario-based approach, a number of logical scenarios describable 

by parameters are defined [Menzel]. The scenarios are derived from the 

system requirements, from the research project PEGASUS (Joint project 

to develop new methods for validating and testing ADAS) as well as 

observations from the field. A logical scenario is typically a specific traffic 

situation. For instance, a cut in maneuver of other objects or a jam end 

situation on a highway as shown in Figure 1. To describe such a logical 

scenario the 6-Layer model can be used [Bock]. For demonstration 

purposes, only the road layer (1) and the moving objects layer (4) are used 

for the description. With the help of the corresponding parameters, these 

logical scenarios can be varied in their characteristics. Hence it is possible 

to vary speeds of the vehicles, distances from objects or the dynamics of 

lane change maneuvers. These so-called specific scenarios resulting from 

different parameter combinations are simulated and the system reaction of 

the ADS is evaluated. This is done through evaluation criteria that reflect the 

criticality of a specific scenario. For example, the Time-To-Collision (TTC) or 

the distance between two vehicles can be used as evaluation criteria.

The intention of the methodology described in the following is to determine 

the probability of failure for each logical traffic scenario. Therefore, the 

parameter space is searched with an intelligent algorithm to determine 

the probability that a critical situation or even an accident can occur. The 

probability distributions of the input parameters as well as the probability 

of occurrence of the respective scenario are determined based on real 

measured data and by using the PEGASUS database [Pütz].

/ Stochastic Analysis

Satisfying design requirements will necessitate ensuring that the scatter 

of all important responses by fluctuating geometrical, material or 

environmental variability lies within acceptable design limits. With the 

help of the robustness analysis this scatter can be estimated. Within this 

framework, the scatter of a response may be described by its mean value 

and standard deviation or its safety margin with respect to a specified failure 

limit. The safety margin can be variance-based (specifying a margin between 

failure and the mean value) or probability-based (using the prob-ability that 

the failure limit is exceeded). In Figure 2 this is shown in principle.

Figure 1: Jam end traffic scenario on the highway. 

By altering the input parameters this logical 

scenario can be varied in its characteristics.

Figure 2: Scatter of a fluctuating response with 

safety margin (distance between mean and the 

failure limit) and the corresponding probability of 

failure pF.

Figure 3: Adaptive Importance Sampling for a 

linear limit state function considering discrete 

random variables, samples in the standard 

Gaussian space.



Safety Assessment of Automated Driver Assistance Systems  // 3

Within the reliability method the probability of reaching a failure limit is 

obtained by an integration of the probability density of the uncertainties in the 

failure domain. One well-known method is the plain Monte Carlo Simulation 

[Rubinstein], which can be applied independently of the model non-linearity 

and the number of input parameters. This method is very robust and can detect 

several failure regions with highly non-linear dependencies. Unfortunately, it 

requires an extremely large number of model evaluations to proof rare events. 

Therefore, more advanced sampling strategies have been developed like 

Importance Sampling, where the sampling density is adapted in order to cover 

the failure domain sufficiently and to obtain more accurate probability estimates 

with much less solver calls. Other methods like the First or Second Order 

Reliability Method (FORM & SORM) are still more efficient than the sampling 

methods by approximating the boundary between the safe and the failure 

domain, the so-called limit state. In contrast to a global low order approximation 

of the whole response, the approximation of the limit state around the most 

probable failure point (MPP) is much more accurate. A good overview of these 

“classical” methods is given in [Bucher].

In our study we have investigated several methods. One reliable and robust 

method for our application is the Adaptive Importance Sampling strategy 

[Bucher]. In this approach an importance sampling density is obtained by 

iterative adjustment of a modified sampling density. 

This method becomes inefficient with increasing number of random variables 

due to the less accurate estimates of the density statistics. Therefore, it is 

recommended to apply this method for problems with up to twenty random 

variables. Furthermore, it can analyze only one dominant failure region. In 

our studies, where discrete distribution types have been used together with 

continuous random variables, we observed an additional numerical effort 

to obtain a similar accuracy of the failure probability estimates as in pure 

continuous problems. This is caused in artificial discontinuities of the limit state 

function in the standard normal space as shown in Figure 3 (see previous page). 

Even for continuous limit state functions such discontinuities occur due to the 

discrete distributions. This phenomenon causes multiple most probable failure 

points, which makes the normal sampling density less efficient.

On order to overcome the limitation of one dominant failure region we extended 

the Importance Sampling using Design Points (ISPUD) by a multi-modal density 

according to [Geyer]. The modified sampling density may consist of an arbitrary 

number of individual sampling densities with different center points and unit 

covariance in the Gaussian space. In Figure 4 the sampling is shown for four 

individual failure regions.

In order to detect the individual failure regions with sufficient confidence, we 

extended the multiple FORM algorithm [Kiureghian]: Based on given start points 

or an initial presampling similar to the first iteration of the Adaptive Importance 

Sampling approach, we perform a local optimization several times. With help of 

a local gradient-based optimizer the closest point, where the limit state turns 

from safe to unsafe and which has the smallest distance to the median point 

on the standard normal space, is detected. Since the start points are selected 

using a density criterion by considering the previous optimization runs, we can 

assure that with a given number of local optimization runs, the important failure 

regions can be found. In case that some of the input parameters are modeled 

with a discrete distribution type, the local optimization is performed only in the 

reduced continuous subspace, but different combinations of the discrete values 

are investigated. 

After the most important failure regions have been detected, the corresponding 

most probable failure points are used as centers for the sampling densities in the 

multi-modal ISPUD approach. Since the failure probability is not estimated by the 

beta-distance analogous FORM but by the more accurate Importance Sampling, 

even non-linear limit state functions can be accurately evaluated. Furthermore, 

the local optimizer needs not to be very accurate in the estimate of the local 

most probable failure points.

Figure 4: Importance Sampling using Design Points 

generated by a multi-modal sampling density 

which consists of several standard normal densities.

Figure 5: Jam end scenario: adaptive meta-model 

used for the verification of the reliability algorithms.
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/ Application Example

In this example we investigate the jam end scenario where an ego vehicle 

including a lead vehicle drive to the end of a traffic jam on a highway. At a 

certain time, the lead vehicle will change the lane and the ego vehicle has to 

detect the last vehicle of the jam in order to perform an accident-free braking. 

In the simulation software the Time-To-Collision (TTC) is estimated w.r.t. the 

given input parameters. We consider this TTC as limit state and investigate 

several limits with the reliability algorithms. As input scatter we assume nine 

continuous scattering parameters as lead vehicle and jam end speed, pull out 

time, lead vehicle braking deceleration as well as a lane offsets of the traffic 

jam and the lead vehicle. The number of road lanes, the lead vehicle class and 

the pull out direction have been modeled with discrete random distributions.

In order to perform the analysis and verification more effi ciently, in a first 

step a global meta-model was created based on 1000 samples. In order to 

obtain more samples and thus higher accuracy in the relevant regions a local 

adaptation strategy was used (Adaptive Metamodel of Optimal Prognosis, 

[Ansys Dynardo, Most]). Based on this fast meta-model we investigated the 

multimodal and Adaptive Sampling Importance Sampling in comparison to 

the brute-force Monte Carlo Simulation. In Figure 5 (see previous page) one 

subspace of the 12-dimensional meta-model is shown. As indicated in the 

figure, the lead vehicle speed and the jam end speed are most important in 

this scenario. Furthermore, the relation of the Time-To-Collision and the input 

parameters is almost monotonic. Thus, we would expect to obtain different 

failure regions mainly due to different combinations of the discrete parameters.

In Figure 6 the convergence of the multiple FORM is shown for one specific 

failure limit. It can be seen, that the optimizer converged to different reliability 

index values, which correspond to different most probable failure points. 

Altogether, 20 failure points have been detected which are used as sampling 

centers for the importance sampling.

In Table 1 the obtained estimates of the failure probability are given for the 

different limit values. The multi-modal and adaptive Importance Sampling 

strategy are compared to the results of the Monte Carlo Simulation. As 

indicated in the table, we could obtain a very excellent agreement of the 

results. As indicated, the multi-modal ISPUD is the most efficient algorithm, 

especially for small failure probabilities, which is the expected application 

field. In Figure 7 the importance sampling density is shown for the three most 

important parameters in the orginal parameter space. Next, the multi-modal 

and adaptive Importance Sampling are applied using the traffic simulation 

software directly. The Monte Carlo Simulation could not be applied due to the 

large numerical effort. In Table 2 the results are compared. Again, the results of 

both methods agree very well, while the ISPUD approach needs less samples. 

Table 1: Estimated failure probabilities for different limit state limits using the global meta-model.

Figure 6: Convergence of the multi FORM-search 

assuming a limit of 0.5s for the time-to-collision.

Figure 7: Jam end scenario: joint multi-modal.
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Since the FORM method is applied on the meta-model only, all together 1000 samples for the meta-model plus 5000 samples are 

needed. However, the estimates with the real solver indicate a much larger failure probability as estimated using the meta-model. 

Therefore, in our applications we always apply the ISPUD approach using the direct solver. If the most probable failure points are not 

estimated very accurately, we obtain still valid results since the ISPUD algorithms are running the sampling until a certain accuracy of 

the estimated failure probability is obtained.

Finally, we investigate the influence of the accuracy of obtained most probable failure points. For this purpose, we use the meta-

model again by considering a failure limit of 0.5s for the time-to-collision. We initiate wrong failure points by modifying the limit state 

in the FORM search while keeping the original one in the ISPUD sampling. In Figure 8 the results are illustrated. It can be seen, that 

if the density center points are shifted inside the failure regions, the number of unsafe samples increases which would increase the 

accuracy of the estimated failure probability. Therefore, less samples are necessary to obtain the required accuracy of 10%. In the other 

case, when the estimated failure points and thus the center points of the importance sampling densities are located too far in the 

safe region, the number of samples in the unsafe region decreases and thus the total number of required samples in ISPUD increases. 

Nevertheless, in all three cases the estimate of the failure probability was quite accurate.

/ Conclusion

In this paper we have presented an automatic approach for the reliability evaluation of specific traffic scenarios for the validation 

of Advanced Driver Assistance Systems. In this analysis the control device is represented as a simulation model using software-in-

the-loop technology. Specific inputs of this simulated controller are modeled as random inputs in a stochastic analysis. Based on a 

definition of a failure criterion well known reliability algorithms could be applied. In our study we have used classical Monte Carlo 

Simulation only for verification due to its enormous numerical effort to proof small event probabilities. In order to reduce the number 

of necessary simulation runs, variance reduced importance sampling was applied. For this purpose, we used a multiple design 

point search approach to detect the important failure regions. Based on this result a multi-modal importance sampling density 

was automatically generated in order to quantify the contribution of each failure region to the overall failure probability. Based on a 

confident error estimate we could ensure, that the sampling loop was continued until a required accuracy of the probability estimate 

was obtained. The presented approach enables the automatic reliability proof of an Advanced Driver Assistance System for a specific 

scenario with minimum manual input. However, one very important point is the quantification of the input uncertainties of the 

investigated scenario. These assumptions strongly influence the finally estimated failure rate, therefore, attention should be paid in 

order to derive suitable assumptions about distribution type, scatter and event correlations from real world observations.

Table 2: Estimated failure probabilities for one limit state using the traffic simulation tool directly.

Figure 8: Influence of the accuracy of the obtained most probable failure points using a limit of 0.5s on the meta-model: left – original 

results, middle – failure points are located in unsafe region, right – failure points are located in safe region.
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