Ansys Maxwell

For electric machines, transformers, wireless charging, permanent magnet latches, actuators, and other electrical mechanical devices, Ansys Maxwell is an EM field solver. It solves magnetic and electric fields that are static, frequency-domain, and time-varying.

Low-Frequency Electromagnetic Simulation for Electric Machines

You can precisely describe the nonlinear, transient motion of electromechanical components, as well as their effects on the drive circuit and control system architecture, using Maxwell. You can understand the efficiency of electromechanical systems long before building a prototype in hardware by leveraging Maxwell’s advanced electromagnetic field solvers and seamlessly linking them to integrated circuit and systems simulation technology.

  • Advanced Magnetic Modeling
  • Bi-Directional CAD Integration
  • Multiphysics Couplings
  • Electric Drive Modeling

Ansys Maxwell Key Features

Specialized Design Interfaces

Since the design specifications and simulation requirements for electric machines and power converters are so dissimilar, Ansys Maxwell offers separate interfaces for each.

Multiphysics Coupling Workflow

Ansys Workbench connects Ansys Maxwell’s electromagnetic field solvers, making it simple to set up and analyze complex coupled-physics behaviors like deformed mesh feedback structures, stress and strain feedback on magnetic properties, EM fluids, and acoustics.

Advanced Magnetic Modeling

Perform advanced simulation calculations such as core loss calculations, vector hysteresis, four-quadrant simulation for permanent magnets, magnetostriction and magnetoelastic analysis, and loss computation manufacturing effects.

Automatic, Adaptive Meshing

Ansys Maxwell’s automated adaptive meshing techniques, which require only the geometry, material properties, and desired performance to achieve an effective solution, are a key feature. Ansys Maxwell’s meshing method employs a highly reliable volumetric meshing technique as well as multithreading, which decreases memory use and speeds up time to solution. This tried-and-true technology simplifies the process of creating and refining a finite element mesh, making advanced numerical analysis accessible to employees at all levels of your business.


RMxprt produces geometry, motion and mechanical setup, material properties, core loss, winding and source setup for comprehensive finite element analysis in Ansys Maxwell, in addition to providing traditional motor output measurements.

The template-based interface for transformers and inductors in RMxprt can generate a configuration automatically based on voltage waveform or converter inputs. To optimize the magnetic configuration, the autodesign process considers all combinations of core shapes, sizes, materials, gaps, wire types and gauges, and winding strategies.