fbpx

Ansys Lumerical MQW

Analyze complex band structure, gain, and spontaneous emission across multi-quantum well architectures.

 

MQW Gain

Engineers can effectively measure band structure, gain, and spontaneous emission in multi-quantum well devices thanks to Ansys Lumerical MQW, which simulates quantum mechanical activity in atomically thin semiconductor layers.

Additionally, MQW offers a fully-coupled k.p approach calculation of the quantum mechanical band structure.

 

 

Dynamic Laser Simulation & Modeling

Produce dynamic laser models that incorporate tuning and outside feedback effects into account, simulate and extract important TWLM (Travelling Wave Laser Model) parameters, and analyze steady-state and transient laser performance.

The design and manufacture of MQW lasers are typically complex and expensive; hence, simulations can speed up development and provide information on design factors.

Additionally, when the parameters are changed, measured curves and simulated power curves can be contrasted.

It is possible to closely analyze issues like nonradiative recombination and self-heating that affect how well the simulated laser works.

 

 

Mesoscopic Superconductivity

Engineers utilizing MQW can use the time-dependent Ginzburg-Landau equations to numerically solve the mesoscopic superconducting ring constructions (through finite-element analysis).

Mimic the dynamic behavior of complex magnetic vortices in the semiconductor for a given applied magnetic field.

Users can also look into the many vortex configurations, pinpoint the best vortex states using the two stable vortex shells in the mesoscopic superconducting ring.

And finally, assess the improved photonic surface superconductivity.

 

 

Laser-Thermal-Simulation-Ophthalmology-Thermal-Analysis-for-Near-Sightedness

 

 

 

Ansys-Lumerical-MQW-Multi-Well-Gain-Mesoscopic-Superconductivity-Device

 

 

 

Ansys-Lumerical-MQW-Multi-Well-Gain-Mesoscopic-Superconductivity

 

 

 

 

 

Additional Ansys Lumerical Products

Lumerical software overview and core capabilities

 

 

Ansys Lumerical FDTD

Simulation of Nanophotonic Devices

Ansys-INTERCONNECT-Software-Charting
  • Q-factor Analysis
  • Band Structure Analysis
  • Flexible Material Plug-ins
  • Cloud and HPC Capability
  • 2D or 3D Model Simulation
  • Full Vectoral Customization
  • Far-field Projection Analysis
  • Spatially Varying Anisotropy
  • Custom Surfaces and Volumes
  • Advanced Conformal Meshing
  • Automated S-parameter Extraction

 

Ansys Lumerical MODE

Optical Waveguide & Coupler Solver

Ansys-Lumerical-MODE-Simulation-of-Photonic-Components-Nanophotonics
  • Overlap Analysis
  • Bend Loss Analysis
  • Helical Waveguides
  • 2.5D varFDTD Solver
  • Anisotropic Materials
  • Advanced Conformal Mesh
  • Eigenmode Expansion Solver
  • Spatially Varying Temperature
  • Charge Density Profile Imports
  • Finite Difference Eigenmode Solver
  • Magneto-optical Waveguide Analysis

 

Ansys Lumerical STACK

Optical Thin-Film Simulation

Particle-Multiphysics-thin-film-evaporator-and-evaporation-simulation-SimuTech-Group
  • Plane-Wave Illumination
  • Wavefunction Simulation
  • Frequency Domain Analysis
  • GUI and Lumerical Scripting
  • Mixed Signal Representation
  • Capture Interference Effects
  • Capture Microactivity Effects
  • Optical Thin-Film Application
  • Import Compact Libraries Models
  • Dipole/Dipole Off-Axis Illumination
  • Simulate Thin Film Multilayer Stacks

 

 

Thin-Blue-Line-SimuTech-Group-Engineering

 

 

Ansys Lumerical CHARGE

3D Charge Transport Solver

Ansys-Lumerical-CHARGE-Electric-Batter-Lithium-Ion-Battery-Modeling-and-Simulation
  • Scriptable Material Properties
  • Small Signal Alt Current Analyses
  • Automatic Finite Element Meshing
  • Electrical/Thermal Material Models
  • Parameterizable Simulation Objects
  • Geometry-Linked Sources/Monitors
  • Comprehensive SoC Material Models
  • Isothermal, Non-Isothermal, Electro-Thermal

 

Ansys Lumerical HEAT

3D Heat Transport Solver

Ansys-Lumerical-HEAT-Heat-Transfer-Simulation-Software-Thermal-Conduction
  • Joule (J) Heating Solver
  • Flexible Materials Database
  • Automatic Mesh Refinement
  • Finite-Element Meshing Automation
  • Finite-Element Heat Transport Solver
  • Steady-State and Transient Simulation
  • Rapid Transition from 2D & 3D Solvers
  • Self-Consistent Heat/Charge Transport
  • Conductive, Convection & Radiative FX

 

Ansys Lumerical DGTD

3D Electromagnetic (EM) Simulator

Thermoelectric-effect-heat-transfer-multiphysics-simulation-software
  • Highly Interoperable
  • Object-Conformal Mesh
  • Material-Adaptive Mesh
  • Gaussian Vector Beams
  • Automation and Scripting
  • Bloch Boundary Conditions
  • Automatic Mesh Refinement
  • High Order Mesh Polynomials
  • Transitional 2D & 3D Modeling
  • Far-field and Grating Projections

 

 

Thin-Blue-Line-SimuTech-Group-Engineering

 

 

Ansys Lumerical FEEM

Finite Element Waveguide Simulation

Ansys-INTERCONNECT-Software-Charting-SimuTech-Group
  • Frequency Domain Reflectometry
  • Higher-Order Polynomial Functions
  • Parallel Curved Meshing Adaptivity
  • Electro-Optic Modeling Simulation
  • Thermo-Optic Modeling Simulation
  • Spatially Varying Index Perturbations
  • Determine Effective Refractive Index’
  • Fourier analysis for Signal Processing
  • Material-adaptive Mesh Embedment
  • Waveguide Thermal Sensitivity Tuning

 

Lumerical INTERCONNECT

Photonic Integrated Circuit Simulator

INTERCONNECT-Nanophotonics-Board
  • Wavefunction Calculation
  • Band Diagram Calculation
  • Physics-Based Photonics Solver
  • Quantum Mechanical Analysis
  • Conduction Electron Scattering
  • Gain and Spontaneous Emission
  • Characterization of Band Structures
  • Multi-Quantum Well Stacks Simulator
  • Establish Controllable Quantum States
  • Mesoscopic Superconductivity Analysis

 

Ansys Lumerical Suite

Electronics Photonics Design Automation (EPDA)

Optics-Waveguide-Coupler-Ansys-Lumerical-Mode-Optical-Software
  • Lumerical MODE
  • Lumerical CHARGE
  • Lumerical HEAT
  • Lumerical DGTD
  • Lumerical STACK
  • Lumerical FEEM
  • Lumerical MQW
  • Lumerical VERILOG-A
  • Lumerical INTERCONNECT
  • Lumerical CML COMPILER

 

 

 

Ansys Lumerical MQW (Multi-Quantum Well) In-Action

Supporting Ansys Lumerical MQW video materials showcasing  functionality, and practical photonic application.

Ansys Lumerical PIC Simulation
Eigenmode Expansion & Propagation
Electronics-Photonics Design Automation (EPDA)